20202024

Research activity per year

Filter
Conference proceeding

Search results

  • 2024

    Accurate Forgetting for Heterogeneous Federated Continual Learning

    Wuerkaixi, A., Cui, S., Zhang, J., Yan, K., Han, B., Niu, G., Fang, L., Zhang, C. & Sugiyama, M., May 2024, Proceedings of the Twelfth International Conference on Learning Representations, ICLR 2024. International Conference on Learning Representations, p. 1-19 19 p. (Proceedings of the International Conference on Learning Representations, ICLR).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
    1 Citation (Scopus)
  • A Sober Look at the Robustness of CLIPs to Spurious Features

    Wang, Q., Lin, Y., Chen, Y., Schmidt, L., Han, B. & Zhang, T., Dec 2024, 38th Conference on Neural Information Processing Systems, NeurIPS 2024. Neural Information Processing Systems Foundation, p. 1-40 40 p. (Advances in Neural Information Processing Systems; vol. 37)(NeurIPS Proceedings).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
  • Balancing Similarity and Complementarity for Federated Learning

    Yan, K., Cui, S., Wuerkaixi, A., Zhang, J., Han, B., Niu, G., Sugiyama, M. & Zhang, C., 21 Jul 2024, Proceedings of the 41st International Conference on Machine Learning, ICML 2024. Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A., Oliver, N., Scarlett, J. & Berkenkamp, F. (eds.). ML Research Press, p. 55739-55758 20 p. (Proceedings of the International Conference on Machine Learning)(Proceedings of Machine Learning Research; vol. 235).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
  • Detecting Machine-Generated Texts by Multi-Population Aware Optimization for Maximum Mean Discrepancy

    Zhang, S., Song, Y., Yang, J., Li, Y., Han, B. & Tan, M., May 2024, Proceedings of the Twelfth International Conference on Learning Representations, ICLR 2024. International Conference on Learning Representations, p. 1-36 18 p. (Proceedings of the International Conference on Learning Representations, ICLR).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
    1 Citation (Scopus)
  • Enhancing Contrastive Learning for Ordinal Regression via Ordinal Content Preserved Data Augmentation

    Zheng, J., Yao, Y., Han, B., Wang, D. & Liu, T., May 2024, Proceedings of the Twelfth International Conference on Learning Representations, ICLR 2024. International Conference on Learning Representations, p. 1-17 17 p. (Proceedings of the International Conference on Learning Representations, ICLR).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
    4 Citations (Scopus)
  • Enhancing Evolving Domain Generalization through Dynamic Latent Representations

    Xie, B., Chen, Y., Wang, J., Zhou, K., Han, B., Meng, W. & Cheng, J., 25 Mar 2024, Proceedings of the 38th AAAI Conference on Artificial Intelligence. Association for the Advancement of Artificial Intelligence, p. 16040-16048 9 p. (Proceedings of the AAAI Conference on Artificial Intelligence; vol. 38, no. 14).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
    1 Citation (Scopus)
  • Enhancing Neural Subset Selection: Integrating Background Information into Set Representations

    Xie, B., Bian, Y., Zhou, K., Chen, Y., Zhao, P., Han, B., Meng, W. & Cheng, J., May 2024, Proceedings of the Twelfth International Conference on Learning Representations, ICLR 2024. International Conference on Learning Representations, p. 1-22 22 p. (Proceedings of the International Conference on Learning Representations, ICLR).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
    1 Citation (Scopus)
  • Enhancing One-Shot Federated Learning Through Data and Ensemble Co-Boosting

    Dai, R., Zhang, Y., Li, A., Liu, T., Yang, X. & Han, B., May 2024, Proceedings of the Twelfth International Conference on Learning Representations, ICLR 2024. International Conference on Learning Representations, p. 1-21 21 p. (Proceedings of the International Conference on Learning Representations, ICLR).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
  • Envisioning Outlier Exposure by Large Language Models for Out-of-Distribution Detection

    Cao, C., Zhong, Z., Zhou, Z., Liu, Y., Liu, T. & Han, B., 21 Jul 2024, Proceedings of 41th International Conference on Machine Learning, ICML 2024. Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A., Oliver, N., Scarlett, J. & Berkenkamp, F. (eds.). ML Research Press, p. 5629-5659 31 p. (Proceedings of the International Conference on Machine Learning)(Proceedings of Machine Learning Research; vol. 235).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
  • Federated Learning with Extremely Noisy Clients via Negative Distillation

    Lu, Y., Chen, L., Zhang, Y., Zhang, Y., Han, B., Cheung, Y. M. & Wang, H., 25 Mar 2024, Proceedings of the 38th AAAI Conference on Artificial Intelligence. Wooldridge, M., Dy, J. & Natarajan, S. (eds.). 13 ed. AAAI press, Vol. 38. p. 14184-14192 9 p. (Proceedings of the AAAI Conference on Artificial Intelligence; vol. 38, no. 13).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
  • Fedimpro: Measuring And Improving Client Update In Federated Learning

    Tang, Z., Zhang, Y., Shi, S., Tian, X., Liu, T., Han, B. & Chu, X., May 2024, Proceedings of the Twelfth International Conference on Learning Representations, ICLR 2024. International Conference on Learning Representations, p. 1-30 30 p. (Proceedings of the International Conference on Learning Representations, ICLR).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
    2 Citations (Scopus)
  • Layer-Aware Analysis of Catastrophic Overfitting: Revealing the Pseudo-Robust Shortcut Dependency

    Lin, R., Yu, C., Han, B., Su, H. & Liu, T., 21 Jul 2024, Proceedings of the 41st International Conference on Machine Learning, ICML 2024. Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A., Oliver, N., Scarlett, J. & Berkenkamp, F. (eds.). ML Research Press, p. 30427-30439 13 p. (Proceedings of the International Conference on Machine Learning)(Proceedings of Machine Learning Research; vol. 235).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
  • Less is More: One-shot Subgraph Reasoning on Large-scale Knowledge Graphs

    Zhou, Z., Zhang, Y., Yao, J., Yao, Q. & Han, B., 10 May 2024, Proceedings of the Twelfth International Conference on Learning Representations, ICLR 2024. International Conference on Learning Representations, 32 p. (Proceedings of the International Conference on Learning Representations, ICLR).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
  • Mitigating Label Noise on Graphs via Topological Sample Selection

    Wu, Y., Yao, J., Xia, X., Yu, J., Wang, R., Han, B. & Liu, T., 21 Jul 2024, Proceedings of 41th International Conference on Machine Learning, ICML 2024. Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A., Oliver, N., Scarlett, J. & Berkenkamp, F. (eds.). ML Research Press, p. 53944-53972 29 p. (Proceedings of the International Conference on Machine Learning)(Proceedings of Machine Learning Research; vol. 235).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
  • Mitigating Noisy Correspondence by Geometrical Structure Consistency Learning

    Zhao, Z., Chen, M., Dai, T., Yao, J., Han, B., Zhang, Y. & Wang, Y., 16 Jun 2024, 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, p. 27371-27380 10 p. 10654947

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

  • MOKD: Cross-domain Finetuning for Few-shot Classification via Maximizing Optimized Kernel Dependence

    Tian, H., Liu, F., Liu, T., Du, B., Cheung, Y.-M. & Han, B., 21 Jul 2024, Proceedings of 41th International Conference on Machine Learning, ICML 2024. Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A., Oliver, N., Scarlett, J. & Berkenkamp, F. (eds.). ML Research Press, p. 48154-48185 32 p. (Proceedings of the International Conference on Machine Learning)(Proceedings of Machine Learning Research; vol. 235).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
  • Negative Label Guided OOD Detection With Pretrained Vision-Language Models

    Jiang, X., Liu, F., Fang, Z., Chen, H., Liu, T., Zheng, F. & Han, B., May 2024, Proceedings of the Twelfth International Conference on Learning Representations, ICLR 2024. International Conference on Learning Representations, p. 1-29 29 p. (Proceedings of the International Conference on Learning Representations, ICLR).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
    2 Citations (Scopus)
  • Neural Atoms: Propagating Long-range Interaction in Molecular Graphs through Efficient Communication Channel

    Li, X., Zhou, Z., Yao, J., Rong, Y., Zhang, L. & Han, B., May 2024, Proceedings of the Twelfth International Conference on Learning Representations, ICLR 2024. International Conference on Learning Representations, p. 1-33 33 p. (Proceedings of the International Conference on Learning Representations, ICLR).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
    1 Citation (Scopus)
  • Noisediffusion: Correcting Noise For Image Interpolation With Diffusion Models Beyond Spherical Linear Interpolation

    Zheng, P., Zhang, Y., Fang, Z., Liu, T., Lian, D. & Han, B., May 2024, Proceedings of the Twelfth International Conference on Learning Representations, ICLR 2024. International Conference on Learning Representations, p. 1-25 25 p. (Proceedings of the International Conference on Learning Representations, ICLR).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
    1 Citation (Scopus)
  • On the Over-Memorization During Natural, Robust and Catastrophic Overfitting

    Lin, R., Yu, C., Han, B. & Liu, T., May 2024, Proceedings of the Twelfth International Conference on Learning Representations, ICLR 2024. International Conference on Learning Representations, p. 1-18 18 p. (Proceedings of the International Conference on Learning Representations, ICLR).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
  • Out-of-Distribution Detection with Negative Prompts

    Nie, J., Zhang, Y., Fang, Z., Liu, T., Han, B. & Tian, X., May 2024, Proceedings of the Twelfth International Conference on Learning Representations, ICLR 2024. International Conference on Learning Representations, p. 1-20 20 p. (Proceedings of the International Conference on Learning Representations, ICLR).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
    2 Citations (Scopus)
  • ParsNets: A Parsimonious Composition of Orthogonal and Low-Rank Linear Networks for Zero-Shot Learning

    Guo, J., Zhou, Q., Lu, X., Li, R., Liu, Z., Zhang, J., Han, B., Chen, J., Xie, X. & Guo, S., 3 Aug 2024, Proceedings of the 33rd International Joint Conference on Artificial Intelligence, IJCAI 2024. Larson, K. (ed.). International Joint Conferences on Artificial Intelligence, p. 4062-4070 9 p. (IJCAI International Joint Conference on Artificial Intelligence).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
  • Robust Training of Federated Models with Extremely Label Deficiency

    Zhang, Y., Wang, Z., Tian, X., Wang, N., Liu, T. & Han, B., 9 May 2024, Proceedings of the Twelfth International Conference on Learning Representations, ICLR 2024. International Conference on Learning Representations, p. 1-22 22 p. (Proceedings of the International Conference on Learning Representations, ICLR).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
  • Towards Realistic Model Selection for Semi-supervised Learning

    Li, M., Xia, X., Wu, R., Huang, F., Yu, J., Han, B. & Liu, T., 21 Jul 2024, Proceedings of the 41st International Conference on Machine Learning, ICML. Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A., Oliver, N., Scarlett, J. & Berkenkamp, F. (eds.). ML Research Press, p. 28965-28977 13 p. (Proceedings of the International Conference on Machine Learning)(Proceedings of Machine Learning Research; vol. 235).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
  • Trustworthy Machine Learning under Imperfect Data

    Han, B., 3 Aug 2024, Proceedings of the 33rd International Joint Conference on Artificial Intelligence, IJCAI 2024. Larson, K. (ed.). International Joint Conferences on Artificial Intelligence, p. 8535-8540 6 p. (IJCAI International Joint Conference on Artificial Intelligence).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

  • Unraveling the Impact of Heterophilic Structures on Graph Positive-Unlabeled Learning

    Wu, Y., Yao, J., Han, B., Yao, L. & Liu, T., 21 Jul 2024, Proceedings of the 41st International Conference on Machine Learning, ICML 2024. Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A., Oliver, N., Scarlett, J. & Berkenkamp, F. (eds.). ML Research Press, p. 53928-53943 16 p. (Proceedings of the International Conference on Machine Learning)(Proceedings of Machine Learning Research; vol. 235).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
  • 2023

    AdaProp: Learning Adaptive Propagation for Graph Neural Network based Knowledge Graph Reasoning

    Zhang, Y., Zhou, Z., Yao, Q., Chu, X. & Han, B., 4 Aug 2023, KDD 2023 - Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery (ACM), p. 3446-3457 12 p. (Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
    27 Citations (Scopus)
  • Adjustment and Alignment for Unbiased Open Set Domain Adaptation

    Li, W., Liu, J., Han, B. & Yuan, Y., 17 Jun 2023, Proceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023. IEEE, p. 24110-24119 10 p. (Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition; vol. 2023-June).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    22 Citations (Scopus)
  • A Universal Unbiased Method for Classification from Aggregate Observations

    Wei, Z., Feng, L., Han, B., Liu, T., Niu, G., Zhu, X. & Shen, H. T., Jul 2023, Proceedings of 40th International Conference on Machine Learning, ICML 2023. Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S. & Scarlett, J. (eds.). ML Research Press, p. 36804-36820 17 p. (Proceedings of Machine Learning Research; vol. 202).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
    2 Citations (Scopus)
  • Combating Bilateral Edge Noise for Robust Link Prediction

    Zhou, Z., Yao, J., Liu, J., Guo, X., Yao, Q., He, L., Wang, L., Zheng, B. & Han, B., 10 Dec 2023, 37th Conference on Neural Information Processing Systems, NeurIPS 2023. Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M. & Levine, S. (eds.). Neural Information Processing Systems Foundation, 47 p. 198465. (Advances in Neural Information Processing Systems; vol. 36)(NeurIPS Proceedings).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
    8 Citations (Scopus)
  • Combating Exacerbated Heterogeneity for Robust Models in Federated Learning

    Zhu, J., Yao, J., Liu, T., Yao, Q., Xu, J. & Han, B., 2 Feb 2023, Proceedings of The Eleventh International Conference on Learning Representations, ICLR 2023. International Conference on Learning Representations, p. 1-34 34 p.

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
    1 Citation (Scopus)
  • Combating Representation Learning Disparity with Geometric Harmonization

    Zhou, Z., Yao, J., Hong, F., Zhang, Y., Han, B. & Wang, Y., 10 Dec 2023, 37th Conference on Neural Information Processing Systems, NeurIPS 2023. Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M. & Levine, S. (eds.). Neural Information Processing Systems Foundation, 15 p. 198465. (Advances in Neural Information Processing Systems; vol. 36)(NeurIPS Proceedings).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
    8 Citations (Scopus)
  • Detecting Adversarial Data by Probing Multiple Perturbations Using Expected Perturbation Score

    Zhang, S., Liu, F., Yang, J., Yang, Y., Li, C., Han, B. & Tan, M., Jul 2023, Proceedings of 40th International Conference on Machine Learning, ICML 2023. Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S. & Scarlett, J. (eds.). ML Research Press, p. 41429-41451 23 p. (Proceedings of Machine Learning Research; vol. 202).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
    5 Citations (Scopus)
  • Detecting Out-of-distribution Data through In-distribution Class Prior

    Jiang, X., Liu, F., Fang, Z., Chen, H., Liu, T., Zheng, F. & Han, B., Jul 2023, Proceedings of the 40th International Conference on Machine Learning, ICML 2023. Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S. & Scarlett, J. (eds.). ML Research Press, Vol. 202. p. 15067-15088 22 p. (Proceedings of Machine Learning Research; vol. 202).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
    5 Citations (Scopus)
  • Diversified Outlier Exposure for Out-of-Distribution Detection via Informative Extrapolation

    Zhu, J., Geng, Y., Yao, J., Liu, T., Niu, G., Sugiyama, M. & Han, B., 13 Dec 2023, 37th Conference on Neural Information Processing Systems, NeurIPS 2023. Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M. & Levine, S. (eds.). Neural Information Processing Systems Foundation, 33 p. (Advances in Neural Information Processing Systems; vol. 36)(NeurIPS Proceedings).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
    4 Citations (Scopus)
  • Diversity-enhancing Generative Network for Few-shot Hypothesis Adaptation

    Dong, R., Liu, F., Chi, H., Liu, T., Gong, M., Niu, G., Sugiyama, M. & Han, B., Jul 2023, Proceedings of 40th International Conference on Machine Learning, ICML 2023. Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S. & Scarlett, J. (eds.). ML Research Press, p. 8260-8275 16 p. (Proceedings of Machine Learning Research; vol. 202).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
    2 Citations (Scopus)
  • Does Invariant Graph Learning via Environment Augmentation Learn Invariance?

    Chen, Y., Bian, Y., Zhou, K., Xie, B., Han, B. & Cheng, J., 10 Dec 2023, 37th Conference on Neural Information Processing Systems, NeurIPS 2023. Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M. & Levine, S. (eds.). Neural Information Processing Systems Foundation, 34 p. 198465. (Advances in Neural Information Processing Systems; vol. 36)(NeurIPS Proceedings).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
    11 Citations (Scopus)
  • Exploring Model Dynamics for Accumulative Poisoning Discovery

    Zhu, J., Guo, X., Yao, J., Du, C., He, L., Yuan, S., Liu, T., Wang, L. & Han, B., Jul 2023, Proceedings of the 40th International Conference on Machine Learning, ICML 2023. Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S. & Scarlett, J. (eds.). ML Research Press, Vol. 202. p. 42983-43004 22 p. (Proceedings of Machine Learning Research; vol. 202).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
  • Federated Learning with Bilateral Curation for Partially Class-Disjoint Data

    Fan, Z., Zhang, R., Yao, J., Han, B., Zhang, Y. & Wang, Y., 10 Dec 2023, Advances in Neural Information Processing Systems 36 (NeurIPS 2023). Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M. & Levine, S. (eds.). Neural Information Processing Systems Foundation, 14 p. 198465. (Advances in Neural Information Processing Systems; vol. 36).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
    6 Citations (Scopus)
  • FedFed: Feature Distillation against Data Heterogeneity in Federated Learning

    Yang, Z., Zhang, Y., Zheng, Y., Tian, X., Peng, H., Liu, T. & Han, B., 10 Dec 2023, 37th Conference on Neural Information Processing Systems, NeurIPS 2023. Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M. & Levine, S. (eds.). Neural Information Processing Systems Foundation, 32 p. 198465. (Advances in Neural Information Processing Systems; vol. 36)(NeurIPS Proceedings).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
    19 Citations (Scopus)
  • FlatMatch: Bridging Labeled Data and Unlabeled Data with Cross-Sharpness for Semi-Supervised Learning

    Huang, Z., Shen, L., Yu, J., Han, B. & Liu, T., 10 Dec 2023, Advances in Neural Information Processing Systems 36 (NeurIPS 2023). Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M. & Levine, S. (eds.). Neural Information Processing Systems Foundation, 21 p. 198465. (Advances in Neural Information Processing Systems; vol. 36).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
    6 Citations (Scopus)
  • InstanT: Semi-supervised Learning with Instance-dependent Thresholds

    Li, M., Wu, R., Liu, H., Yu, J., Yang, X., Han, B. & Liu, T., 10 Dec 2023, 37th Conference on Neural Information Processing Systems, NeurIPS 2023. Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M. & Levine, S. (eds.). Neural Information Processing Systems Foundation, 17 p. 198465. (Advances in Neural Information Processing Systems; vol. 36)(NeurIPS Proceedings).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
    9 Citations (Scopus)
  • Label-Noise Learning with Intrinsically Long-Tailed Data

    Lu, Y., Zhang, Y., Han, B., Cheung, Y. M. & Wang, H., 2 Oct 2023, Proceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023. IEEE, p. 1369-1378 10 p. (Proceedings of the IEEE International Conference on Computer Vision).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    6 Citations (Scopus)
  • Learning to Augment Distributions for Out-of-distribution Detection

    Wang, Q., Fang, Z., Zhang, Y., Liu, F., Li, Y. & Han, B., 14 Dec 2023, 37th Conference on Neural Information Processing Systems, NeurIPS 2023. Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M. & Levine, S. (eds.). Neural Information Processing Systems Foundation, 13 p. (Advances in Neural Information Processing Systems; vol. 36)(NeurIPS Proceedings).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
    14 Citations (Scopus)
  • Moderately Distributional Exploration for Domain Generalization

    Dai, R., Zhang, Y., Fang, Z., Han, B. & Tian, X., Jul 2023, Proceedings of 40th International Conference on Machine Learning, ICML 2023. Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S. & Scarlett, J. (eds.). ML Research Press, p. 6786-6817 32 p. (Proceedings of Machine Learning Research; vol. 202).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
    5 Citations (Scopus)
  • NAS-LID: Efficient Neural Architecture Search with Local Intrinsic Dimension

    He, X., Yao, J., Wang, Y., Tang, Z., Cheung, K. C., See, S., Han, B. & Chu, X., 27 Jun 2023, Proceedings of the 37th AAAI Conference on Artificial Intelligence. Williams, B., Chen, Y. & Neville, J. (eds.). 1st ed. Washington, DC: AAAI press, p. 7839-7847 9 p. (Proceedings of the AAAI Conference on Artificial Intelligence; vol. 37, no. 6).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
    6 Citations (Scopus)
  • On Strengthening and Defending Graph Reconstruction Attack with Markov Chain Approximation

    Zhou, Z., Zhou, C., Li, X., Yao, J., Yao, Q. & Han, B., Jul 2023, Proceedings of the 40th International Conference on Machine Learning, ICML 2023. Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S. & Scarlett, J. (eds.). ML Research Press, Vol. 202. p. 42843-42877 35 p. (Proceedings of Machine Learning Research; vol. 202).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
    5 Citations (Scopus)
  • Out-of-distribution Detection Learning with Unreliable Out-of-distribution Sources

    Zheng, H., Wang, Q., Fang, Z., Xia, X., Liu, F., Liu, T. & Han, B., 14 Dec 2023, 37th Conference on Neural Information Processing Systems, NeurIPS 2023. Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M. & Levine, S. (eds.). Neural Information Processing Systems Foundation, 14 p. 198465. (Advances in Neural Information Processing Systems; vol. 36)(NeurIPS Proceedings).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
    3 Citations (Scopus)
  • Robust Generalization Against Photon-Limited Corruptions via Worst-Case Sharpness Minimization

    Huang, Z., Zhu, M., Xia, X., Shen, L., Yu, J., Gong, C., Han, B., Du, B. & Liu, T., 17 Jun 2023, Proceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023. Vancouver, BC, Canada: IEEE, p. 16175-16185 11 p. (Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition; vol. 2023-June).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    19 Citations (Scopus)
  • SODA: Robust Training of Test-Time Data Adaptors

    Wang, Z., Zhang, Y., Fang, Z., Lan, L., Yang, W. & Han, B., 10 Dec 2023, Advances in Neural Information Processing Systems 36 (NeurIPS 2023). Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M. & Levine, S. (eds.). Neural Information Processing Systems Foundation, p. 44017-44038 22 p. 198465. (Advances in Neural Information Processing Systems; vol. 36).

    Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

    Open Access
    1 Citation (Scopus)